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Abstract
We investigate the dynamics of Randall–Sundrum AdS5 braneworlds with
five-dimensional conformal matter fields. In the scenario with a compact
fifth dimension the class of conformal fields with weight −4 is associated
with exact five-dimensional warped geometries which are stable under radion
field perturbations and describe on the brane the dynamics of inhomogeneous
dust, generalized dark radiation and homogeneous polytropic dark energy.
We analyse the graviton mode fluctuations around this class of background
solutions and determine their mass eigenvalues and wavefunctions from a
Sturm–Liouville problem. We show that the localization of gravity is not
sharp enough for large mass hierarchies to be generated. We also discuss the
physical bounds imposed by experiments in particle physics, in astrophysics
and in precise measurements of the low energy gravitational interaction.

PACS numbers: 04.50.+h, 04.70.−s, 98.80.−k, 11.25.Mj, 11.25.Wx

1. Introduction

In the AdS5 Randall–Sundrum (RS) scenario [1, 2] our visible four-dimensional (4D) Universe
is a 3-brane world embedded in a Z2 symmetric five-dimensional (5D) anti-de Sitter (AdS)
space. In the RS1 model [1] the fifth dimension is compact and there are two 3-brane
boundaries. In this setting gravity is exponentially localized near the hidden positive tension
brane and decays towards the observable negative tension brane. The hierarchy problem is
then reformulated as an exponential hierarchy between the weak and Planck scales [1]. In the
RS2 model [2] the AdS5 orbifold has an infinite fifth dimension and a single visible positive
tension brane to which the gravitational field is exponentially bound.

In the visible brane the low energy theory of gravity is 4D general relativity and the
cosmology may be Friedmann–Robertson–Walker [1–10]. In the RS1 model this requires
the stabilization of the radion mode with, for example, a 5D scalar field [3, 6, 9, 10]. Using

1751-8113/07/256991+07$30.00 © 2007 IOP Publishing Ltd Printed in the UK 6991

http://dx.doi.org/10.1088/1751-8113/40/25/S51
mailto:rneves@ualg.pt
http://stacks.iop.org/JPhysA/40/6991


6992 R Neves

the Gauss–Codazzi formulation [11, 12] many other braneworld solutions have been discovered
although a number of them have not yet been associated with exact 5D spacetimes [13–16].

In this paper we continue the research about the dynamics of a spherically symmetric RS
3-brane when conformal matter fields propagate in the bulk [17–20] (see also [21]). Some
time ago [17, 18] we discovered a new class of exact 5D dynamical warped solutions which
is associated with conformal fields characterized by an energy–momentum tensor of weight
−4. These solutions were shown to describe on the brane the dynamics of inhomogeneous
dust, generalized dark radiation and homogeneous polytropic matter [17, 18]. The latter in
particular refers to a perfect dark energy fluid and describes the accelerated expansion of our
Universe. The radion may be stabilized by a sector of the conformal bulk fields of weight −4
while another sector generates the dynamics on the brane. The stabilization requires a bulk
fluid sector with a constant negative 5D pressure and involves new warp functions [20]. If the
theory of gravity on the brane deviates from that of Einstein the existence of such dynamical
geometries requires the presence of non-conformal matter fields confined to the brane [22].
In this work we analyse the graviton field perturbations around this class of background
geometries and determine their mass eigenvalues and wavefunctions from a Sturm–Liouville
problem. We show that gravity is not sufficiently localized near the positive tension branes to
be able to generate large mass hierarchies. We also discuss the physical bounds imposed by
experiments in particle physics, in astrophysics and in precise measurements of Newton’s law
of gravity.

2. 5D Einstein equations and conformal fields

The most general non-factorizable dynamical metric consistent with the Z2 symmetry in the
fifth dimension and with 4D spherical symmetry on the brane is given by

ds̃2
5 = �2

(
dz2 − e2A dt2 + e2B dr2 + R2 d�2

2

)
, (1)

where (t, r, θ, φ, z) are the coordinates mapping the AdS5 orbifold. In this set z is related to
the Cartesian coordinate y by z = l ey/l, y > 0, with l being the AdS radius. The functions
� = �(t, r, z), A = A(t, r, z), B = B(t, r, z) and R = R(t, r, z) are Z2 symmetric. R(t, r, z)

represents the physical radius of the 2-spheres and � is the warp factor characterizing a global
conformal transformation on the metric.

In the RS1 model the classical dynamics is defined by the 5D Einstein equations,

G̃ν
µ = −κ2

5

{
�Bδν

µ +
1√
g̃55

[λδ (z − z0) + λ′δ(z − z′
0)]

(
δν
µ − δν

5δ5
µ

) − T̃ ν
µ

}
, (2)

where �B is the negative bulk cosmological constant and κ2
5 = 8π

/
M3

5 with M5 being the
fundamental 5D mass scale. λ, λ′ are the brane tensions and T̃ ν

µ is the stress–energy tensor of
the matter fields which in 5D is conserved:

∇̃µT̃ µ
ν = 0. (3)

For a general 5D metric g̃µν (2) and (3) form a complex system of differential equations.
To solve it let us introduce some simplifying assumptions [20]. First consider that the bulk
matter is described by conformal fields with weight s. Under the conformal transformation
g̃µν = �2gµν the stress–energy tensor satisfies T̃ ν

µ = �s+2T ν
µ . Then separate the conformal

tensor T̃ ν
µ in two sectors T̃ ν

µ and Ũ ν
µ with the same weight s, T̃ ν

µ = T̃ ν
µ + Ũ ν

µ, where T̃ ν
µ =

�s+2T ν
µ and Ũ ν

µ = �s+2Uν
µ, and take s = −4. Finally, consider A = A(t, r), B = B(t, r),

R = R(t, r) and � = �(z). Then (2) leads to [20]

Gb
a = κ2

5 T b
a , (4)
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G5
5 = κ2

5 T 5
5 , (5)

6�−2(∂z�)2 + κ2
5 �2�B = κ2

5 U 5
5 , (6){

3�−1∂2
z � + κ2

5 �2{�B + �−1[λδ(z − z0) + λ′δ(z − z′
0)]}

}
δb
a = κ2

5 Ub
a , (7)

where the Latin indices represent the 4D coordinates t, r, θ and φ. On the other hand, from
(3) we also obtain [20]

∇aT
a
b = 0 (8)

and the equations of state 2T 5
5 = T a

a , 2U 5
5 = Ua

a . Uν
µ turns out to be a constant

diagonal tensor, Uν
µ = diag(−ρ̄, p̄r, p̄T, p̄T, p̄5), with the density ρ̄ and pressures p̄r, p̄T, p̄5

satisfying p̄5 = −2ρ̄ = 2p̄r = 2p̄T. Note that ∇aU
a
b = 0 is an identity. If

T ν
µ = diag(−ρ, pr, pT, pT, p5), where ρ, pr, pT and p5 are, respectively, the density and

pressures then its equation of state is re-written as

ρ − pr − 2pT + 2p5 = 0. (9)

3. Exact 5D warped solutions

The AdS5 braneworld dynamics is defined by the solutions of (4) to (9) [20]. Solving (6) and
(7) we obtain

�(y) = e−|y|/l
(
1 + p5

B e2|y|/l
)
, λ = λRS

1 − p5
B

1 + p5
B

, λ′ = −λRS
1 − p5

B exp(2πrc/l)

1 + p5
B exp(2πrc/l)

,

(10)

where p5
B = p̄5/(4�B), λRS = 6

/(
lκ2

5

)
and rc is the RS compactification scale.

To determine the dynamics on the brane we solve (4) and (5) when T ν
µ satisfies (8) and (9)

[20]. Note that as long as p5 balances ρ, pr and pT according to (5) and (9), the 4D equation of
state is not constrained. Three examples corresponding to inhomogeneous dust, generalized
dark radiation and homogeneous polytropic matter were considered in [17, 18]. The latter
describes the dynamics on the brane of dark energy in the form of a polytropic fluid. The 5D
dark energy polytropic solutions are [18]

ds̃2
5 = �2

[
−dt2 + S2

(
dr2

1 − kr2
+ r2 d�2

2

)]
+ dy2, (11)

where S satisfies SṠ2 = κ2
5 (ηS3−3α + a)

1
1−α /3 − kS. α and η characterize different polytropic

phases. For −1 � α < 0, the fluid is in its generalized Chaplygin phase.

4. Radion stability

Provided the equation of state of the conformal fluid is independent of the radion perturbation,
these solutions are stable for a range of the model parameters if p5

B > 0 [20]. Using x = y/rc

the radion mass is given in terms of the dimensionless radion mass parameter M (see figure 1):

mγ = 1

rc

√
4|M|

3
∫ π

−π
dx �2

, M = λrcκ
2
5 �4(0) + λ′rcκ

2
5 �4(π) − 6r2

c

l2

∫ π

−π

dx �4. (12)

For p5
B > 0, the stability of the AdS5 braneworlds also depends on the dimensionless ratio

l/rc. For l/rc < 1.589 . . . all solutions turn out to be unstable. Stable universes begin to
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Figure 1. Plot of the radion mass parameter M for l/rc = 5. Thick line—0 < p5
B � e−2π/5 : λ >

0, λ′ � 0; thin line—e−2π/5 < p5
B � 1 : λ � 0, λ′ > 0; dashed line—p5

B > 1 : λ < 0, λ′ > 0.

appear at l/rc = 1.589, . . . , p5
B = 0.138 . . . . For l/rc > 1.589, . . . , we find stable solutions

for an interval of p5
B (see in figure 1 the example of l/rc = 5) which increases with l/rc. For

large enough but finite l/rc, the stability interval approaches the limit ]0.267, . . . , 3.731, . . .[.
Naturally, M → 0 if l/rc → ∞.

The particle physics bound for the radion mass is mγ > 35–120 GeV [23]. For fixed
l/rc, the order of magnitude bound mγ > 100 GeV requires a small fifth dimension, rc < 1 ×
10−15 mm. Since the 5D mass scale is related to the 4D Planck mass M2

P = 8π
/
κ2

4 ∼ 1 ×
1019 GeV by M3

5 rc

∫ π

−π
dx�2 = M2

P, we conclude that M5 > 2 × 1010 TeV. Consequently this
radion is invisible in astrophysical processes which require at least mγ > 100 MeV [23]. It
is also invisible in precision Newton’s law measurements which imply mγ > 6.25 × 10−4 eV
[23].

If the scale M5 is high enough then the radion may be light. The direct bound from
particle physics is M5 > 1–2 TeV [23]. From astrophysics it may be as high as M5 >

1–200 TeV [23]. Now mγ > 6.25 × 10−4 eV corresponds to a large fifth dimension with
rc < 160 µm. Then the 5D scale is indeed high, M5 > 4 × 105 TeV.

These results are a consequence of the absence of a large mass hierarchy, m =
�(πrc)m0, �(πrc) ∼ 1 − 100, and as order of magnitude estimates they hold for all
the p5

B stability range.

5. The gravitons

To analyse the graviton field perturbations around the background ḡµν let us write the classical
5D Einstein equations as

G̃µν = −κ2
5M̃µν, (13)

where the energy–momentum tensor M̃µν is

M̃µν = 1√
g̃55

[λδ(y − y0) + λ′δ(y − y ′
0)]

(
g̃µν − δ5

µg̃5ν − g̃µ5δ
5
ν + g̃55δ

5
µδ5

ν

)
+ �Bg̃µν − T̃µν.

(14)
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Consider the graviton perturbation hµν such that g̃µν = ḡµν + hµν . Using ĥµν = hµν − 1
2 ḡµνh

where h = hµ
µ we find

G̃µν = Ḡµν − 1
2 (∇̄2ĥµν + ḡµν∇̄α∇̄βĥαβ) + ∇̄(µ∇̄αĥαν) + R̄αβ

µν ĥαβ + Ḡ
β

(µĥν)β + 1
6 R̄ĥḡµν. (15)

On the other hand M̃µν = M̄µν + δMµν . Since Ḡµν = −κ2
5M̄µν we obtain

− 1
2 (∇̄2ĥµν + ḡµν∇̄α∇̄βĥαβ) + ∇̄(µ∇̄αĥαν) + R̄αβ

µν ĥαβ = −Ḡ
β

(µĥν)β − 1
6 R̄ĥḡµν − κ2

5 δMµν.

(16)

Assume a flat brane background ḡab = �2(y)ηab, ḡ55 = 1, ḡ5a = ḡa5 = 0,∀a. Consider
also the graviton perturbation g̃ab = ḡab + hab, g̃55 = ḡ55, g̃5a = ḡ5a and the RS gauge
∂ahab = h = 0. Then

− 1
2 ∇̄2hµν + R̄αβ

µνhαβ + Ḡ
β

(µhν)β = −κ2
5 δMµν. (17)

Expanding, we find[
−1

2

(
�−2�4 + ∂2

y

)
+ 4

∂2
y�

�
+ 4

(
∂y�

�

)2
]

hab = −κ2
5 δMab. (18)

The conformal 5D energy–momentum tensor T̃µν is

T̃ab = 2�Bp5
B

�2
g̃ab, T̃a5 = T̃5a = 0, T̃55 = 4�Bp5

B

�2
g̃55. (19)

Then the energy–momentum tensor perturbation is

δMab = �B

(
1 − 2p5

B

�2

)
hab + [λδ(y − y0) + λ′δ(y − y ′

0)]hab. (20)

Using the warp equations (6), (7) in the y coordinate and writing the graviton wavefunction
as hab = eip·xψab(y), where p2 = −m2, we obtain the following Sturm–Liouville problem:

−1

2
∂2
yψab +

2

l2

[
1 − 2p5

B e2|y|/l
(
1 + p5

B e2|y|/l
)−2]

ψab − 2

l

1 − p5
B

1 + p5
B

δ(y)ψab

− 2

l

1 − p5
B e2πrc/ l

1 + p5
B e2πrc/ l

δ(y − πrc)ψab = m2 e2|y|/l
(
1 + p5

B e2|y|/l
)−2

ψab. (21)

The eigenvalues m2 are positive or zero leading to m � 0. The set is infinite but discrete,
mi, i = 0, 1, . . . + ∞. There is just one massless graviton, m0 = 0. It has a positive
wavefunction ψ0 in the fifth dimension. This wavefunction is localized near the positive
tension branes. The massive gravitons have oscillating wavefunctions ψi, i = 1, . . . + ∞.
Their masses and mass splittings decrease when rc increases. For the solutions with a stabilized
radion there is no hierarchy between graviton wavefunctions (see figure 2) so that gravity is
not strongly localized.

Like the radion the massive gravitons may be above the TeV scale. Their mass splittings
have the same order of magnitude. The radion and the less massive graviton have similar
masses. The massive gravitons may also be light. Newton’s potential is

V (r) = −G4mm′

r

(
1 +

|ψ1|2
|ψ0|2 e−m1r + · · ·

)
. (22)

Since |ψ1|2/|ψ0|2 ∼ 1 we must have rc < 160 µm and m1 > 1 × 10−3 eV.
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Figure 2. Plot of graviton wavefunctions ψ for l/rc = 5 and p5
B = 0.25. Shown are the massless

graviton and the first four massive gravitons. The mass scale is set by rc = 100 µm = 1×103 eV−1.

(This figure is in colour only in the electronic version)

6. Conclusions

In this paper we have analysed exact 5D solutions describing the dynamics of AdS5 braneworlds
when conformal fields of weight −4 exist in the bulk. We have considered solutions for which
gravity is localized near the brane and the dynamics on the brane is, for example, that of
inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy.
We have seen that the radion may be stabilized using only the conformal bulk fields of weight
−4 which generate the dynamics on the brane. This requires invariance of their equation of
state under the radion perturbation, a stabilizing sector with a constant negative 5D pressure
and new warp functions. We have also discussed graviton perturbations and determined their
mass eigenvalues and wavefunctions from a Sturm–Liouville problem. Besides a massless
graviton localized on the positive tension branes we have seen that this scenario involves an
infinite discrete set of increasingly massive gravitons. We have shown that the new stabilizing
warp functions are unable to generate a large mass hierarchy and that gravity is not strongly
localized near the branes. Possibilities of overcoming this problem are the introduction of
supersymmetry [24] or of a non-conformal 5D scalar field [3] to stabilize the radion field.
This analysis is left for future research. Finally we have also shown that to satisfy the current
observational constraints [23] the radion and the less massive graviton may either be heavier
than ∼100 GeV corresponding to a small fifth dimension ∼1 × 10−15 mm or light with mass
above ∼1 × 10−3 eV corresponding to a compactification scale of the order of 100 µm.
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